BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone.

نویسندگان

  • Fan Ye
  • Andrew R Nager
  • Maxence V Nachury
چکیده

A diffusion barrier at the transition zone enables the compartmentalization of signaling molecules by cilia. The BBSome and the small guanosine triphosphatase Arl6, which triggers BBSome coat polymerization, are required for the exit of activated signaling receptors from cilia, but how diffusion barriers are crossed when membrane proteins exit cilia remains to be determined. In this study, we found that activation of the ciliary G protein-coupled receptors (GPCRs) Smoothened and SSTR3 drove the Arl6-dependent assembly of large, highly processive, and cargo-laden retrograde BBSome trains. Single-molecule imaging revealed that the assembly of BBSome trains enables the lateral transport of ciliary GPCRs across the transition zone. However, the removal of activated GPCRs from cilia was inefficient because a second periciliary diffusion barrier was infrequently crossed. We conclude that exit from cilia is a two-step process in which BBSome/Arl6 trains first move activated GPCRs through the transition zone before a periciliary barrier can be crossed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Actin Network Dispatches Ciliary GPCRs into Extracellular Vesicles to Modulate Signaling

Signaling receptors dynamically exit cilia upon activation of signaling pathways such as Hedgehog. Here, we find that when activated G protein-coupled receptors (GPCRs) fail to undergo BBSome-mediated retrieval from cilia back into the cell, these GPCRs concentrate into membranous buds at the tips of cilia before release into extracellular vesicles named ectosomes. Unexpectedly, actin and the a...

متن کامل

BBS1 is involved in retrograde trafficking of ciliary GPCRs in the context of the BBSome complex

Protein trafficking within cilia is mediated by the intraflagellar transport (IFT) machinery composed of large protein complexes. The BBSome consists of eight BBS proteins encoded by causative genes of Bardet-Biedl syndrome (BBS), and has been implicated in the trafficking of ciliary membrane proteins, including G protein-coupled receptors (GPCRs), by connecting the IFT machinery to cargo GPCRs...

متن کامل

Nephrocystin proteins NPHP5 and Cep290 regulate BBSome integrity, ciliary trafficking and cargo delivery.

Proper functioning of cilia, hair-like structures responsible for sensation and locomotion, requires nephrocystin-5 (NPHP5) and a multi-subunit complex called the Bardet-Biedl syndrome (BBS)ome, but their precise relationship is not understood. The BBSome is involved in the trafficking of membrane cargos to cilia. While it is known that a loss of any single subunit prevents ciliary trafficking ...

متن کامل

Targeting of vasoactive intestinal peptide receptor 2, VPAC2, a secretin family G-protein coupled receptor, to primary cilia

Primary cilia protrude from the cell surface of many cell types in the human body and function as cellular antennae via ciliary membrane localized receptors. Neurons and glial cells in the brain possess primary cilia, and the malfunction of primary cilia may contribute to neurological deficits present in many cilia-associated disorders. Several rhodopsin family G-protein coupled receptors (GPCR...

متن کامل

A recombinant BBSome core complex and how it interacts with ciliary cargo

Cilia are small, antenna-like structures on the surface of eukaryotic cells that harbor a unique set of sensory proteins, including GPCRs and other membrane proteins. The transport of these proteins involves the BBSome, an eight-membered protein complex that is recruited to ciliary membranes by the G-protein Arl6. BBSome malfunction leads to Bardet-Biedl syndrome, a ciliopathy with severe conse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of cell biology

دوره   شماره 

صفحات  -

تاریخ انتشار 2018